Bacteria


From Wikipedia, the free encyclopedia

Jump to navigationJump to search

Bacteria
Temporal range: Archean or earlier – present

EscherichiaColi NIAID.jpg
Scanning electron micrograph of Escherichia coli rods
Scientific classificatione
Domain: Bacteria
WoeseKandler & Wheelis, 1990[1]
Phyla
Acidobacteria
Actinobacteria
Aquificae
Armatimonadetes
Bacteroidetes
Caldiserica
Chlamydiae
Chlorobi
Chloroflexi
Chrysiogenetes
Cyanobacteria
Deferribacteres
Deinococcus-Thermus
Dictyoglomi
Elusimicrobia
Fibrobacteres
Firmicutes
Fusobacteria
Gemmatimonadetes
Lentisphaerae
Nitrospirae
Planctomycetes
Proteobacteria
Spirochaetes
Synergistetes
Tenericutes
Thermodesulfobacteria
Thermotogae
Verrucomicrobia
Synonyms
Eubacteria Woese & Fox, 1977[2]

Bacteria (/bækˈtɪəriə/ (About this sound listen); common noun bacteria, singular bacterium) is a type of biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springsradioactive waste,[3] and the deep portions of Earth’s crust. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised, and only about half of the bacterial phyla have species that can be grown in the laboratory.[4] The study of bacteria is known as bacteriology, a branch of microbiology.

There are typically 40 million bacterial cells in a gram of soil and a million bacterial cells in a millilitre of fresh water. There are approximately 5×1030 bacteria on Earth,[5] forming a biomass which exceeds that of all plants and animals.[6] Bacteria are vital in many stages of the nutrient cycle by recycling nutrients such as the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies and bacteria are responsible for the putrefaction stage in this process.[7] In the biological communities surrounding hydrothermal vents and cold seepsextremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. In March 2013, data reported by researchers in October 2012, was published. It was suggested that bacteria thrive in the Mariana Trench, which with a depth of up to 11 kilometres is the deepest known part of the oceans.[8][9] Other researchers reported related studies that microbes thrive inside rocks up to 580 metres below the sea floor under 2.6 kilometres of ocean off the coast of the northwestern United States.[8][10] According to one of the researchers, “You can find microbes everywhere—they’re extremely adaptable to conditions, and survive wherever they are.”[8]

The famous notion that bacterial cells in the human body outnumber human cells by a factor of 10:1 has been debunked. There are approximately 39 trillion bacterial cells in the human microbiota as personified by a “reference” 70 kg male 170 cm tall, whereas there are 30 trillion human cells in the body. This means that although they do have the upper hand in actual numbers, it is only by 30%, and not 900%.[11]

The largest number exist in the gut flora, and a large number on the skin.[12] The vast majority of the bacteria in the body are rendered harmless by the protective effects of the immune system, though many are beneficial, particularly in the gut flora. However several species of bacteria are pathogenic and cause infectious diseases, including cholerasyphilisanthraxleprosy, and bubonic plague. The most common fatal bacterial diseases are respiratory infections, with tuberculosis alone killing about 2 million people per year, mostly in sub-Saharan Africa.[13] In developed countriesantibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. In industry, bacteria are important in sewage treatment and the breakdown of oil spills, the production of cheese and yogurt through fermentation, the recovery of gold, palladium, copper and other metals in the mining sector,[14] as well as in biotechnology, and the manufacture of antibiotics and other chemicals.[15]

Once regarded as plants constituting the class Schizomycetes, bacteria are now classified as prokaryotes. Unlike cells of animals and other eukaryotes, bacterial cells do not contain a nucleus and rarely harbour membrane-bound organelles. Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor. These evolutionary domains are called Bacteria and Archaea.[1]

Etymology

The word bacteria is the plural of the New Latin bacterium, which is the latinisation of the Greek βακτήριον(bakterion),[16] the diminutive of βακτηρία (bakteria), meaning “staff, cane”,[17] because the first ones to be discovered were rod-shaped.[18][19]

Origin and early evolution

The ancestors of modern bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago. For about 3 billion years, most organisms were microscopic, and bacteria and archaea were the dominant forms of life.[20][21] Although bacterial fossils exist, such as stromatolites, their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny, and these studies indicate that bacteria diverged first from the archaeal/eukaryotic lineage.[22] The most recent common ancestorof bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago.[23][24]

Bacteria were also involved in the second great evolutionary divergence, that of the archaea and eukaryotes. Here, eukaryotes resulted from the entering of ancient bacteria into endosymbiotic associations with the ancestors of eukaryotic cells, which were themselves possibly related to the Archaea.[25][26] This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes, which are still found in all known Eukarya (sometimes in highly reduced form, e.g. in ancient “amitochondrial” protozoa). Later, some eukaryotes that already contained mitochondria also engulfed cyanobacteria-like organisms, leading to the formation of chloroplasts in algae and plants.[27][28] This is known as secondary endosymbiosis.

Morphology

a diagram showing bacteria morphology

Bacteria display many cell morphologies and arrangements

Bacteria display a wide diversity of shapes and sizes, called morphologies. Bacterial cells are about one-tenth the size of eukaryotic cells and are typically 0.5–5.0 micrometres in length. However, a few species are visible to the unaided eye—for example, Thiomargarita namibiensis is up to half a millimetre long[29] and Epulopiscium fishelsoni reaches 0.7 mm.[30] Among the smallest bacteria are members of the genus Mycoplasma, which measure only 0.3 micrometres, as small as the largest viruses.[31] Some bacteria may be even smaller, but these ultramicrobacteria are not well-studied.[32]

Most bacterial species are either spherical, called cocci (sing. coccus, from Greek kókkos, grain, seed), or rod-shaped, called bacilli (sing. bacillus, from Latin baculus, stick).[33] Some bacteria, called vibrio, are shaped like slightly curved rods or comma-shaped; others can be spiral-shaped, called spirilla, or tightly coiled, called spirochaetes. A small number of other unusual shapes have been described, such as star-shaped bacteria.[34] This wide variety of shapes is determined by the bacterial cell wall and cytoskeleton, and is important because it can influence the ability of bacteria to acquire nutrients, attach to surfaces, swim through liquids and escape predators.[35][36]

The range of sizes shown by prokaryotes, relative to those of other organisms and biomolecules.

Many bacterial species exist simply as single cells, others associate in characteristic patterns: Neisseria form diploids (pairs), Streptococcus form chains, and Staphylococcus group together in “bunch of grapes” clusters. Bacteria can also group to form larger multicellular structures, such as the elongated filaments of Actinobacteria, the aggregates of Myxobacteria, and the complex hyphae of Streptomyces.[37] These multicellular structures are often only seen in certain conditions. For example, when starved of amino acids, Myxobacteria detect surrounding cells in a process known as quorum sensing, migrate towards each other, and aggregate to form fruiting bodies up to 500 micrometres long and containing approximately 100,000 bacterial cells.[38] In these fruiting bodies, the bacteria perform separate tasks; for example, about one in ten cells migrate to the top of a fruiting body and differentiate into a specialised dormant state called a myxospore, which is more resistant to drying and other adverse environmental conditions.[39]

Bacteria often attach to surfaces and form dense aggregations called biofilms, and larger formations known as microbial mats. These biofilms and mats can range from a few micrometres in thickness to up to half a metre in depth, and may contain multiple species of bacteria, protists and archaea. Bacteria living in biofilms display a complex arrangement of cells and extracellular components, forming secondary structures, such as microcolonies, through which there are networks of channels to enable better diffusion of nutrients.[40][41] In natural environments, such as soil or the surfaces of plants, the majority of bacteria are bound to surfaces in biofilms.[42] Biofilms are also important in medicine, as these structures are often present during chronic bacterial infections or in infections of implanted medical devices, and bacteria protected within biofilms are much harder to kill than individual isolated bacteria.[43]

Cellular structure

Prokaryote cell with structure and parts

Structure and contents of a typical gram-positive bacterial cell (seen by the fact that only one cell membrane is present).

Intracellular structures

The bacterial cell is surrounded by a cell membrane which is made primarily of phospholipids. This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell.[44] Unlike eukaryotic cells, bacteria usually lack large membrane-bound structures in their cytoplasm such as a nucleusmitochondriachloroplasts and the other organelles present in eukaryotic cells.[45] However, some bacteria have protein-bound organelles in the cytoplasm which compartmentalize aspects of bacterial metabolism,[46][47] such as the carboxysome.[48]Additionally, bacteria have a multi-component cytoskeleton to control the localisation of proteins and nucleic acids within the cell, and to manage the process of cell division.[49][50][51]

Many important biochemical reactions, such as energy generation, occur due to concentration gradients across membranes, creating a potential difference analogous to a battery. The general lack of internal membranes in bacteria means these reactions, such as electron transport, occur across the cell membrane between the cytoplasm and the outside of the cell or periplasm.[52]However, in many photosynthetic bacteria the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane.[53] These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria.[54]

An electron micrograph of Halothiobacillus neapolitanus cells with carboxysomes inside, with arrows highlighting visible carboxysomes. Scale bars indicate 100 nm.

Most bacteria do not have a membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid.[55] The nucleoid contains the chromosome with its associated proteins and RNA. Like all living organisms, bacteria contain ribosomes for the production of proteins, but the structure of the bacterial ribosome is different from that of eukaryotes and Archaea.[56]

Some bacteria produce intracellular nutrient storage granules, such as glycogen,[57] polyphosphate,[58] sulfur[59] or polyhydroxyalkanoates.[60] Certain bacterial species, such as the photosynthetic Cyanobacteria, produce internal gas vacuoleswhich they use to regulate their buoyancy, allowing them to move up or down into water layers with different light intensities and nutrient levels.[61]

Extracellular structures

Around the outside of the cell membrane is the cell wall. Bacterial cell walls are made of peptidoglycan (called “murein” in older sources), which is made from polysaccharide chains cross-linked by peptides containing D-amino acids.[62] Bacterial cell walls are different from the cell walls of plants and fungi, which are made of cellulose and chitin, respectively.[63] The cell wall of bacteria is also distinct from that of Archaea, which do not contain peptidoglycan. The cell wall is essential to the survival of many bacteria, and the antibiotic penicillin is able to kill bacteria by inhibiting a step in the synthesis of peptidoglycan.[63]

There are broadly speaking two different types of cell wall in bacteria, called Gram-positive and Gram-negative. The names originate from the reaction of cells to the Gram stain, a long-standing test for the classification of bacterial species.[64]

Gram-positive bacteria possess a thick cell wall containing many layers of peptidoglycan and teichoic acids. In contrast, Gram-negative bacteria have a relatively thin cell wall consisting of a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins. Most bacteria have the Gram-negative cell wall, and only the Firmicutes and Actinobacteria (previously known as the low G+C and high G+C gram-positive bacteria, respectively) have the alternative Gram-positive arrangement.[65] These differences in structure can produce differences in antibiotic susceptibility; for instance, vancomycin can kill only Gram-positive bacteria and is ineffective against Gram-negative pathogens, such as Haemophilus influenzae or Pseudomonas aeruginosa.[66] Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as Mycobacteria which have a thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids.[67]

In many bacteria, an S-layer of rigidly arrayed protein molecules covers the outside of the cell.[68] This layer provides chemical and physical protection for the cell surface and can act as a macromolecular diffusion barrier. S-layers have diverse but mostly poorly understood functions, but are known to act as virulence factors in Campylobacter and contain surface enzymes in Bacillus stearothermophilus.[69]

Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface

Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface

Flagella are rigid protein structures, about 20 nanometres in diameter and up to 20 micrometres in length, that are used for motility. Flagella are driven by the energy released by the transfer of ions down an electrochemical gradient across the cell membrane.[70]

Fimbriae (sometimes called “attachment pili“) are fine filaments of protein, usually 2–10 nanometres in diameter and up to several micrometres in length. They are distributed over the surface of the cell, and resemble fine hairs when seen under the electron microscope. Fimbriae are believed to be involved in attachment to solid surfaces or to other cells, and are essential for the virulence of some bacterial pathogens.[71] Pili (sing. pilus) are cellular appendages, slightly larger than fimbriae, that can transfer genetic material between bacterial cells in a process called conjugation where they are called conjugation pili or sex pili (see bacterial genetics, below).[72] They can also generate movement where they are called type IV pili.[73]

Glycocalyx is produced by many bacteria to surround their cells, and varies in structural complexity: ranging from a disorganised slime layer of extracellular polymeric substances to a highly structured capsule. These structures can protect cells from engulfment by eukaryotic cells such as macrophages (part of the human immune system).[74] They can also act as antigens and be involved in cell recognition, as well as aiding attachment to surfaces and the formation of biofilms.[75]

The assembly of these extracellular structures is dependent on bacterial secretion systems. These transfer proteins from the cytoplasm into the periplasm or into the environment around the cell. Many types of secretion systems are known and these structures are often essential for the virulence of pathogens, so are intensively studied.[76]

Endospores

Anthrax stained purple

Bacillus anthracis (stained purple) growing in cerebrospinal fluid

Certain genera of Gram-positive bacteria, such as BacillusClostridiumSporohalobacterAnaerobacter, and Heliobacterium, can form highly resistant, dormant structures called endospores.[77] Endospores develop within the cytoplasm of the cell; generally a single endospore develops in each cell.[78] Each endospore contains a core of DNA and ribosomes surrounded by a cortex layer and protected by a multilayer rigid coat composed of peptidoglycan and a variety of proteins.[78]

Endospores show no detectable metabolism and can survive extreme physical and chemical stresses, such as high levels of UV lightgamma radiationdetergentsdisinfectants, heat, freezing, pressure, and desiccation.[79] In this dormant state, these organisms may remain viable for millions of years,[80][81] and endospores even allow bacteria to survive exposure to the vacuumand radiation in space.[82] Endospore-forming bacteria can also cause disease: for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus.[83]

Metabolism

Bacteria exhibit an extremely wide variety of metabolic types.[84] The distribution of metabolic traits within a group of bacteria has traditionally been used to define their taxonomy, but these traits often do not correspond with modern genetic classifications.[85] Bacterial metabolism is classified into nutritional groups on the basis of three major criteria: the source of energy, the electron donors used, and the source of carbon used for growth.[86]

Bacteria either derive energy from light using photosynthesis (called phototrophy), or by breaking down chemical compounds using oxidation (called chemotrophy).[87]Chemotrophs use chemical compounds as a source of energy by transferring electrons from a given electron donor to a terminal electron acceptor in a redox reaction. This reaction releases energy that can be used to drive metabolism. Chemotrophs are further divided by the types of compounds they use to transfer electrons. Bacteria that use inorganic compounds such as hydrogren, carbon monoxide, or ammonia as sources of electrons are called lithotrophs, while those that use organic compounds are called organotrophs.[87] The compounds used to receive electrons are also used to classify bacteria: aerobic organisms use oxygen as the terminal electron acceptor, while anaerobic organisms use other compounds such as nitratesulfate, or carbon dioxide.[87]

Many bacteria get their carbon from other organic carbon, called heterotrophy. Others such as cyanobacteria and some purple bacteria are autotrophic, meaning that they obtain cellular carbon by fixing carbon dioxide.[88] In unusual circumstances, the gas methane can be used by methanotrophic bacteria as both a source of electrons and a substrate for carbon anabolism.[89]

Nutritional types in bacterial metabolism
Nutritional type Source of energy Source of carbon Examples
 Phototrophs Sunlight  Organic compounds (photoheterotrophs) or carbon fixation (photoautotrophs)  CyanobacteriaGreen sulfur bacteriaChloroflexi, or Purple bacteria
 Lithotrophs Inorganic compounds  Organic compounds (lithoheterotrophs) or carbon fixation (lithoautotrophs)  ThermodesulfobacteriaHydrogenophilaceae, or Nitrospirae
 Organotrophs Organic compounds  Organic compounds (chemoheterotrophs) or carbon fixation (chemoautotrophs)  BacillusClostridium or Enterobacteriaceae

In many ways, bacterial metabolism provides traits that are useful for ecological stability and for human society. One example is that some bacteria have the ability to fix nitrogen gas using the enzyme nitrogenase. This environmentally important trait can be found in bacteria of most metabolic types listed above.[90] This leads to the ecologically important processes of denitrification, sulfate reduction, and acetogenesis, respectively.[91][92] Bacterial metabolic processes are also important in biological responses to pollution; for example, sulfate-reducing bacteria are largely responsible for the production of the highly toxic forms of mercury (methyl- and dimethylmercury) in the environment.[93] Non-respiratory anaerobes use fermentation to generate energy and reducing power, secreting metabolic by-products (such as ethanol in brewing) as waste. Facultative anaerobes can switch between fermentation and different terminal electron acceptors depending on the environmental conditions in which they find themselves.

Growth and reproduction

drawing of showing the processes of binary fission, mitosis, and meiosis

Many bacteria reproduce through binary fission, which is compared to mitosis and meiosis in this image.

Unlike in multicellular organisms, increases in cell size (cell growth) and reproduction by cell division are tightly linked in unicellular organisms. Bacteria grow to a fixed size and then reproduce through binary fission, a form of asexual reproduction.[94] Under optimal conditions, bacteria can grow and divide extremely rapidly, and bacterial populations can double as quickly as every 9.8 minutes.[95] In cell division, two identical clone daughter cells are produced. Some bacteria, while still reproducing asexually, form more complex reproductive structures that help disperse the newly formed daughter cells. Examples include fruiting body formation by Myxobacteria and aerial hyphae formation by Streptomyces, or budding. Budding involves a cell forming a protrusion that breaks away and produces a daughter cell.

E. coli colony

A colony of Escherichia coli[96]

In the laboratory, bacteria are usually grown using solid or liquid media. Solid growth media, such as agar plates, are used to isolate pure cultures of a bacterial strain. However, liquid growth media are used when measurement of growth or large volumes of cells are required. Growth in stirred liquid media occurs as an even cell suspension, making the cultures easy to divide and transfer, although isolating single bacteria from liquid media is difficult. The use of selective media (media with specific nutrients added or deficient, or with antibiotics added) can help identify specific organisms.[97]

Most laboratory techniques for growing bacteria use high levels of nutrients to produce large amounts of cells cheaply and quickly. However, in natural environments, nutrients are limited, meaning that bacteria cannot continue to reproduce indefinitely. This nutrient limitation has led the evolution of different growth strategies (see r/K selection theory). Some organisms can grow extremely rapidly when nutrients become available, such as the formation of algal (and cyanobacterial) blooms that often occur in lakes during the summer.[98] Other organisms have adaptations to harsh environments, such as the production of multiple antibiotics by Streptomyces that inhibit the growth of competing microorganisms.[99] In nature, many organisms live in communities (e.g., biofilms) that may allow for increased supply of nutrients and protection from environmental stresses.[42] These relationships can be essential for growth of a particular organism or group of organisms (syntrophy).[100]

Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase, a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as proteins necessary for rapid growth are produced.[101] The second phase of growth is the logarithmic phase, also known as the exponential phase. The log phase is marked by rapid exponential growth. The rate at which cells grow during this phase is known as the growth rate (k), and the time it takes the cells to double is known as the generation time (g). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth. The third phase of growth is the stationary phase and is caused by depleted nutrients. The cells reduce their metabolic activity and consume non-essential cellular proteins. The stationary phase is a transition from rapid growth to a stress response state and there is increased expression of genes involved in DNA repairantioxidant metabolism and nutrient transport.[102] The final phase is the death phase where the bacteria run out of nutrients and die.[103]

Genetics

Most bacteria have a single circular chromosome that can range in size from only 160,000 base pairs in the endosymbiotic bacteria Carsonella ruddii,[104] to 12,200,000 base pairs (12.2 Mbp) in the soil-dwelling bacteria Sorangium cellulosum.[105] There are many exceptions to this, for example some Streptomyces and Borrelia species contain a single linear chromosome,[106][107] while some Vibrio species contain more than one chromosome.[108] Bacteria can also contain plasmids, small extra-chromosomal DNAs that may contain genes for various useful functions such as antibiotic resistance, metabolic capabilities, or various virulence factors.[109]

Bacteria genomes usually encode a few hundred to a few thousand genes. The genes in bacterial genomes are usually a single continuous stretch of DNA and although several different types of introns do exist in bacteria, these are much rarer than in eukaryotes.[110]

Bacteria, as asexual organisms, inherit an identical copy of the parent’s genomes and are clonal. However, all bacteria can evolve by selection on changes to their genetic material DNA caused by genetic recombination or mutations. Mutations come from errors made during the replication of DNA or from exposure to mutagens. Mutation rates vary widely among different species of bacteria and even among different clones of a single species of bacteria.[111] Genetic changes in bacterial genomes come from either random mutation during replication or “stress-directed mutation”, where genes involved in a particular growth-limiting process have an increased mutation rate.[112]

Some bacteria also transfer genetic material between cells. This can occur in three main ways. First, bacteria can take up exogenous DNA from their environment, in a process called transformation.[113] Many bacteria can naturally take up DNA from the environment, while others must be chemically altered in order to induce them to take up DNA.[114] The development of competence in nature is usually associated with stressful environmental conditions, and seems to be an adaptation for facilitating repair of DNA damage in recipient cells.[115] The second way bacteria transfer genetic material is by transduction, when the integration of a bacteriophage introduces foreign DNA into the chromosome. Many types of bacteriophage exist, some simply infect and lyse their host bacteria, while others insert into the bacterial chromosome.[116]Bacteria resist phage infection through restriction modification systems that degrade foreign DNA,[117] and a system that uses CRISPR sequences to retain fragments of the genomes of phage that the bacteria have come into contact with in the past, which allows them to block virus replication through a form of RNA interference.[118][119]The third method of gene transfer is conjugation, whereby DNA is transferred through direct cell contact. In ordinary circumstances, transduction, conjugation, and transformation involve transfer of DNA between individual bacteria of the same species, but occasionally transfer may occur between individuals of different bacterial species and this may have significant consequences, such as the transfer of antibiotic resistance.[120][121] In such cases, gene acquisition from other bacteria or the environment is called horizontal gene transfer and may be common under natural conditions.[122]

Behaviour

Movement

Transmission electron micrograph of Desulfovibrio vulgaris showing a single flagellum at one end of the cell. Scale bar is 0.5 micrometers long.

Many bacteria are motile and can move using a variety of mechanisms. The best studied of these are flagella, long filaments that are turned by a motor at the base to generate propeller-like movement.[123] The bacterial flagellum is made of about 20 proteins, with approximately another 30 proteins required for its regulation and assembly.[123] The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power.[124]

The different arrangements of bacterial flagella: A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous

Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and makes their movement a three-dimensional random walk.[125] Bacterial species differ in the number and arrangement of flagella on their surface; some have a single flagellum (monotrichous), a flagellum at each end (amphitrichous), clusters of flagella at the poles of the cell (lophotrichous), while others have flagella distributed over the entire surface of the cell (peritrichous). The flagella of a unique group of bacteria, the spirochaetes, are found between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves.[123]

Two other types of bacterial motion, called twitching motility and gliding motility, rely on a structure called the type IV pilus.[126] In these types of motility, the rod-like pilus extends out from the cell, binds some substrate, and then retracts, pulling the cell forward.[127]

Motile bacteria are attracted or repelled by certain stimuli in behaviours called taxes: these include chemotaxisphototaxisenergy taxis, and magnetotaxis.[128][129][130] In one peculiar group, the myxobacteria, individual bacteria move together to form waves of cells that then differentiate to form fruiting bodies containing spores.[39] The myxobacteria move only when on solid surfaces, unlike E. coli, which is motile in liquid or solid media.

Several Listeria and Shigella species move inside host cells by usurping the cytoskeleton, which is normally used to move organelles inside the cell. By promoting actin polymerisation at one pole of their cells, they can form a kind of tail that pushes them through the host cell’s cytoplasm.[131]

Communication

A few bacteria have chemical systems that generate light. This bioluminescence often occurs in bacteria that live in association with fish, and the light probably serves to attract fish or other large animals.[132]

Bacteria often function as multicellular aggregates known as biofilms, exchanging a variety of molecular signals for inter-cell communication, and engaging in coordinated multicellular behaviour.[133][134]

The communal benefits of multicellular cooperation include a cellular division of labour, accessing resources that cannot effectively be used by single cells, collectively defending against antagonists, and optimising population survival by differentiating into distinct cell types.[133] For example, bacteria in biofilms can have more than 500 times increased resistance to antibacterial agents than individual “planktonic” bacteria of the same species.[134]

One type of inter-cellular communication by a molecular signal is called quorum sensing, which serves the purpose of determining whether there is a local population density that is sufficiently high that it is productive to invest in processes that are only successful if large numbers of similar organisms behave similarly, as in excreting digestive enzymes or emitting light.

Quorum sensing allows bacteria to coordinate gene expression, and enables them to produce, release and detect autoinducers or pheromones which accumulate with the growth in cell population.[135]

Classification and identification

blue stain of Streptococcus mutans

Streptococcus mutans visualised with a Gram stain

Euryarchaeota Nanoarchaeota Crenarchaeota Protozoa Algae Plantae Slime molds Animal Fungus Gram-positive bacteria Chlamydiae Chloroflexi Actinobacteria Planctomycetes Spirochaetes Fusobacteria Cyanobacteria Thermophiles Acidobacteria Proteobacteria

Phylogenetic tree showing the diversity of bacteria, compared to other organisms.[136] Eukaryotes are coloured red, archaea green and bacteria blue.

Classification seeks to describe the diversity of bacterial species by naming and grouping organisms based on similarities. Bacteria can be classified on the basis of cell structure, cellular metabolism or on differences in cell components, such as DNAfatty acids, pigments, antigens and quinones.[97] While these schemes allowed the identification and classification of bacterial strains, it was unclear whether these differences represented variation between distinct species or between strains of the same species. This uncertainty was due to the lack of distinctive structures in most bacteria, as well as lateral gene transfer between unrelated species.[137] Due to lateral gene transfer, some closely related bacteria can have very different morphologies and metabolisms. To overcome this uncertainty, modern bacterial classification emphasises molecular systematics, using genetic techniques such as guanine cytosine ratio determination, genome-genome hybridisation, as well as sequencing genes that have not undergone extensive lateral gene transfer, such as the rRNA gene.[138] Classification of bacteria is determined by publication in the International Journal of Systematic Bacteriology,[139] and Bergey’s Manual of Systematic Bacteriology.[140] The International Committee on Systematic Bacteriology (ICSB) maintains international rules for the naming of bacteria and taxonomic categories and for the ranking of them in the International Code of Nomenclature of Bacteria.

The term “bacteria” was traditionally applied to all microscopic, single-cell prokaryotes. However, molecular systematics showed prokaryotic life to consist of two separate domains, originally called Eubacteria and Archaebacteria, but now called Bacteria and Archaea that evolved independently from an ancient common ancestor.[1] The archaea and eukaryotes are more closely related to each other than either is to the bacteria. These two domains, along with Eukarya, are the basis of the three-domain system, which is currently the most widely used classification system in microbiology.[141] However, due to the relatively recent introduction of molecular systematics and a rapid increase in the number of genome sequences that are available, bacterial classification remains a changing and expanding field.[4][142] For example, a few biologists argue that the Archaea and Eukaryotes evolved from gram-positive bacteria.[143]

The identification of bacteria in the laboratory is particularly relevant in medicine, where the correct treatment is determined by the bacterial species causing an infection. Consequently, the need to identify human pathogens was a major impetus for the development of techniques to identify bacteria.

The Gram stain, developed in 1884 by Hans Christian Gram, characterises bacteria based on the structural characteristics of their cell walls.[64] The thick layers of peptidoglycan in the “gram-positive” cell wall stain purple, while the thin “gram-negative” cell wall appears pink. By combining morphology and Gram-staining, most bacteria can be classified as belonging to one of four groups (gram-positive cocci, gram-positive bacilli, gram-negative cocci and gram-negative bacilli). Some organisms are best identified by stains other than the Gram stain, particularly mycobacteria or Nocardia, which show acid-fastness on Ziehl–Neelsen or similar stains.[144] Other organisms may need to be identified by their growth in special media, or by other techniques, such as serology.

Culture techniques are designed to promote the growth and identify particular bacteria, while restricting the growth of the other bacteria in the sample. Often these techniques are designed for specific specimens; for example, a sputum sample will be treated to identify organisms that cause pneumonia, while stool specimens are cultured on selective media to identify organisms that cause diarrhoea, while preventing growth of non-pathogenic bacteria. Specimens that are normally sterile, such as bloodurine or spinal fluid, are cultured under conditions designed to grow all possible organisms.[97][145] Once a pathogenic organism has been isolated, it can be further characterised by its morphology, growth patterns (such as aerobic or anaerobic growth), patterns of hemolysis, and staining.

As with bacterial classification, identification of bacteria is increasingly using molecular methods. Diagnostics using DNA-based tools, such as polymerase chain reaction, are increasingly popular due to their specificity and speed, compared to culture-based methods.[146] These methods also allow the detection and identification of “viable but nonculturable” cells that are metabolically active but non-dividing.[147] However, even using these improved methods, the total number of bacterial species is not known and cannot even be estimated with any certainty. Following present classification, there are a little less than 9,300 known species of prokaryotes, which includes bacteria and archaea;[148] but attempts to estimate the true number of bacterial diversity have ranged from 107 to 109 total species—and even these diverse estimates may be off by many orders of magnitude.[149][150]

Interactions with other organisms

chart showing bacterial infections upon various parts of human body

Overview of bacterial infections and main species involved.[151][152]

Despite their apparent simplicity, bacteria can form complex associations with other organisms. These symbioticassociations can be divided into parasitismmutualism and commensalism. Due to their small size, commensal bacteria are ubiquitous and grow on animals and plants exactly as they will grow on any other surface. However, their growth can be increased by warmth and sweat, and large populations of these organisms in humans are the cause of body odour.

Predators

Some species of bacteria kill and then consume other microorganisms, these species are called predatory bacteria.[153] These include organisms such as Myxococcus xanthus, which forms swarms of cells that kill and digest any bacteria they encounter.[154] Other bacterial predators either attach to their prey in order to digest them and absorb nutrients, such as Vampirovibrio chlorellavorus,[155] or invade another cell and multiply inside the cytosol, such as Daptobacter.[156] These predatory bacteria are thought to have evolved from saprophages that consumed dead microorganisms, through adaptations that allowed them to entrap and kill other organisms.[157]

Mutualists

Certain bacteria form close spatial associations that are essential for their survival. One such mutualistic association, called interspecies hydrogen transfer, occurs between clusters of anaerobic bacteria that consume organic acids, such as butyric acid or propionic acid, and produce hydrogen, and methanogenic Archaea that consume hydrogen.[158] The bacteria in this association are unable to consume the organic acids as this reaction produces hydrogen that accumulates in their surroundings. Only the intimate association with the hydrogen-consuming Archaea keeps the hydrogen concentration low enough to allow the bacteria to grow.

In soil, microorganisms that reside in the rhizosphere (a zone that includes the root surface and the soil that adheres to the root after gentle shaking) carry out nitrogen fixation, converting nitrogen gas to nitrogenous compounds.[159] This serves to provide an easily absorbable form of nitrogen for many plants, which cannot fix nitrogen themselves. Many other bacteria are found as symbionts in humans and other organisms. For example, the presence of over 1,000 bacterial species in the normal human gut flora of the intestines can contribute to gut immunity, synthesise vitamins, such as folic acidvitamin K and biotin, convert sugars to lactic acid (see Lactobacillus), as well as fermenting complex undigestible carbohydrates.[160][161][162] The presence of this gut flora also inhibits the growth of potentially pathogenic bacteria (usually through competitive exclusion) and these beneficial bacteria are consequently sold as probiotic dietary supplements.[163]

Pathogens

Color-enhanced scanning electron micrograph of red Salmonella typhimurium in yellow human cells

Colour-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells

If bacteria form a parasitic association with other organisms, they are classed as pathogens. Pathogenic bacteria are a major cause of human death and disease and cause infections such as tetanustyphoid feverdiphtheriasyphilischolerafoodborne illnessleprosy and tuberculosis. A pathogenic cause for a known medical disease may only be discovered many years after, as was the case with Helicobacter pylori and peptic ulcer disease. Bacterial diseases are also important in agriculture, with bacteria causing leaf spotfire blight and wilts in plants, as well as Johne’s diseasemastitissalmonella and anthrax in farm animals.

Each species of pathogen has a characteristic spectrum of interactions with its human hosts. Some organisms, such as Staphylococcus or Streptococcus, can cause skin infections, pneumoniameningitis and even overwhelming sepsis, a systemic inflammatory response producing shock, massive vasodilation and death.[164] Yet these organisms are also part of the normal human flora and usually exist on the skin or in the nose without causing any disease at all. Other organisms invariably cause disease in humans, such as the Rickettsia, which are obligate intracellular parasites able to grow and reproduce only within the cells of other organisms. One species of Rickettsia causes typhus, while another causes Rocky Mountain spotted feverChlamydia, another phylum of obligate intracellular parasites, contains species that can cause pneumonia, or urinary tract infection and may be involved in coronary heart disease.[165] Finally, some species, such as Pseudomonas aeruginosaBurkholderia cenocepacia, and Mycobacterium avium, are opportunistic pathogens and cause disease mainly in people suffering from immunosuppression or cystic fibrosis.[166][167]

Bacterial infections may be treated with antibiotics, which are classified as bacteriocidal if they kill bacteria, or bacteriostatic if they just prevent bacterial growth. There are many types of antibiotics and each class inhibits a process that is different in the pathogen from that found in the host. An example of how antibiotics produce selective toxicity are chloramphenicol and puromycin, which inhibit the bacterial ribosome, but not the structurally different eukaryotic ribosome.[168] Antibiotics are used both in treating human disease and in intensive farming to promote animal growth, where they may be contributing to the rapid development of antibiotic resistance in bacterial populations.[169] Infections can be prevented by antiseptic measures such as sterilising the skin prior to piercing it with the needle of a syringe, and by proper care of indwelling catheters. Surgical and dental instruments are also sterilised to prevent contamination by bacteria. Disinfectants such as bleach are used to kill bacteria or other pathogens on surfaces to prevent contamination and further reduce the risk of infection.

Significance in technology and industry

Bacteria, often lactic acid bacteria, such as Lactobacillus and Lactococcus, in combination with yeasts and moulds, have been used for thousands of years in the preparation of fermented foods, such as cheesepicklessoy saucesauerkrautvinegarwine and yogurt.[170][171]

The ability of bacteria to degrade a variety of organic compounds is remarkable and has been used in waste processing and bioremediation. Bacteria capable of digesting the hydrocarbons in petroleum are often used to clean up oil spills.[172] Fertiliser was added to some of the beaches in Prince William Sound in an attempt to promote the growth of these naturally occurring bacteria after the 1989 Exxon Valdez oil spill. These efforts were effective on beaches that were not too thickly covered in oil. Bacteria are also used for the bioremediation of industrial toxic wastes.[173] In the chemical industry, bacteria are most important in the production of enantiomerically pure chemicals for use as pharmaceuticals or agrichemicals.[174]

Bacteria can also be used in the place of pesticides in the biological pest control. This commonly involves Bacillus thuringiensis (also called BT), a gram-positive, soil dwelling bacterium. Subspecies of this bacteria are used as a Lepidopteran-specific insecticides under trade names such as Dipel and Thuricide.[175] Because of their specificity, these pesticides are regarded as environmentally friendly, with little or no effect on humans, wildlifepollinators and most other beneficial insects.[176][177]

Because of their ability to quickly grow and the relative ease with which they can be manipulated, bacteria are the workhorses for the fields of molecular biologygeneticsand biochemistry. By making mutations in bacterial DNA and examining the resulting phenotypes, scientists can determine the function of genes, enzymes and metabolic pathways in bacteria, then apply this knowledge to more complex organisms.[178] This aim of understanding the biochemistry of a cell reaches its most complex expression in the synthesis of huge amounts of enzyme kinetic and gene expression data into mathematical models of entire organisms. This is achievable in some well-studied bacteria, with models of Escherichia coli metabolism now being produced and tested.[179][180] This understanding of bacterial metabolism and genetics allows the use of biotechnology to bioengineer bacteria for the production of therapeutic proteins, such as insulingrowth factors, or antibodies.[181][182]

Because of their importance for research in general, samples of bacterial strains are isolated and preserved in Biological Resource Centers. This ensures the availability of the strain to scientists worldwide.

History of bacteriology

painting of Antonie van Leeuwenhoek, in robe and frilled shirt, with ink pen and paper

Antonie van Leeuwenhoek, the first microbiologist and the first person to observe bacteria using a microscope.

Bacteria were first observed by the Dutch microscopist Antonie van Leeuwenhoek in 1676, using a single-lens microscope of his own design.[183] He then published his observations in a series of letters to the Royal Society of London.[184][185][186] Bacteria were Leeuwenhoek’s most remarkable microscopic discovery. They were just at the limit of what his simple lenses could make out and, in one of the most striking hiatuses in the history of science, no one else would see them again for over a century.[187] His observations had also included protozoans which he called animalcules, and his findings were looked at again in the light of the more recent findings of cell theory.

Christian Gottfried Ehrenberg introduced the word “bacterium” in 1828.[188] In fact, his Bacterium was a genus that contained non-spore-forming rod-shaped bacteria,[189] as opposed to Bacillus, a genus of spore-forming rod-shaped bacteria defined by Ehrenberg in 1835.[190]

Louis Pasteur demonstrated in 1859 that the growth of microorganisms causes the fermentation process, and that this growth is not due to spontaneous generation. (Yeasts and moulds, commonly associated with fermentation, are not bacteria, but rather fungi.) Along with his contemporary Robert Koch, Pasteur was an early advocate of the germ theory of disease.[191]

Robert Koch, a pioneer in medical microbiology, worked on choleraanthrax and tuberculosis. In his research into tuberculosis Koch finally proved the germ theory, for which he received a Nobel Prize in 1905.[192] In Koch’s postulates, he set out criteria to test if an organism is the cause of a disease, and these postulates are still used today.[193]

Ferdinand Cohn is said to be a founder of bacteriology, studying bacteria from 1870. Cohn was the first to classify bacteria based on their morphology.[194][195]

Though it was known in the nineteenth century that bacteria are the cause of many diseases, no effective antibacterial treatments were available.[196] In 1910, Paul Ehrlichdeveloped the first antibiotic, by changing dyes that selectively stained Treponema pallidum—the spirochaete that causes syphilis—into compounds that selectively killed the pathogen.[197] Ehrlich had been awarded a 1908 Nobel Prize for his work on immunology, and pioneered the use of stains to detect and identify bacteria, with his work being the basis of the Gram stain and the Ziehl–Neelsen stain.[198]

A major step forward in the study of bacteria came in 1977 when Carl Woese recognised that archaea have a separate line of evolutionary descent from bacteria.[2] This new phylogenetic taxonomy depended on the sequencing of 16S ribosomal RNA, and divided prokaryotes into two evolutionary domains, as part of the three-domain system.[1]

See also

References

  1. Jump up to:a b c d Woese CR, Kandler O, Wheelis ML (June 1990). “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”Proceedings of the National Academy of Sciences of the United States of America87(12): 4576–9. Bibcode:1990PNAS…87.4576Wdoi:10.1073/pnas.87.12.4576PMC 54159Freely accessiblePMID 2112744.
  2. Jump up to:a b Woese CR, Fox GE (November 1977). “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”Proceedings of the National Academy of Sciences of the United States of America74 (11): 5088–90. Bibcode:1977PNAS…74.5088Wdoi:10.1073/pnas.74.11.5088PMC 432104Freely accessiblePMID 270744.
  3. Jump up^ Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SM, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (July 2004). “Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state”Applied and Environmental Microbiology70 (7): 4230–41. doi:10.1128/AEM.70.7.4230-4241.2004PMC 444790Freely accessiblePMID 15240306.
  4. Jump up to:a b Rappé MS, Giovannoni SJ (2003). “The uncultured microbial majority”. Annual Review of Microbiology57: 369–94. doi:10.1146/annurev.micro.57.030502.090759PMID 14527284.
  5. Jump up^ Whitman WB, Coleman DC, Wiebe WJ (June 1998). “Prokaryotes: the unseen majority”Proceedings of the National Academy of Sciences of the United States of America95 (12): 6578–83. Bibcode:1998PNAS…95.6578Wdoi:10.1073/pnas.95.12.6578PMC 33863Freely accessiblePMID 9618454.
  6. Jump up^ C.Michael Hogan. 2010. Bacteria. Encyclopedia of Earth. eds. Sidney Draggan and C.J.Cleveland, National Council for Science and the Environment, Washington DCArchived 11 May 2011 at the Wayback Machine.
  7. Jump up^ Forbes SL (2008). “Decomposition Chemistry in a Burial Environment”. In Tibbett M, Carter DO. Soil Analysis in Forensic Taphonomy. CRC Press. pp. 203–223. ISBN 1-4200-6991-8.
  8. Jump up to:a b c Choi CQ (17 March 2013). “Microbes Thrive in Deepest Spot on Earth”LiveScienceArchived from the original on 2 April 2013. Retrieved 17 March 2013.
  9. Jump up^ Glud R, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H (2013). “High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth”Nature Geoscience6 (4): 284–288. Bibcode:2013NatGe…6..284Gdoi:10.1038/ngeo1773.
  10. Jump up^ Oskin B (14 March 2013). “Intraterrestrials: Life Thrives in Ocean Floor”LiveScienceArchived from the original on 2 April 2013. Retrieved 17 March 2013.
  11. Jump up^ Sender R, Fuchs S, Milo R (2016). “Revised estimates for the number of human and bacteria cells in the body”. bioRxiv 036103Freely accessible.
  12. Jump up^ Sears CL (October 2005). “A dynamic partnership: celebrating our gut flora”. Anaerobe11 (5): 247–51. doi:10.1016/j.anaerobe.2005.05.001PMID 16701579.
  13. Jump up^ “2002 WHO mortality data”Archived from the original on 23 October 2013. Retrieved 20 January 2007.
  14. Jump up^ “Metal-Mining Bacteria Are Green Chemists”Science Daily. 2 September 2010. Archived from the original on 31 August 2017.
  15. Jump up^ Ishige T, Honda K, Shimizu S (April 2005). “Whole organism biocatalysis”. Current Opinion in Chemical Biology9 (2): 174–80. doi:10.1016/j.cbpa.2005.02.001PMID 15811802.
  16. Jump up^ βακτήριονLiddell, Henry GeorgeScott, RobertA Greek–English Lexicon at the Perseus Project.
  17. Jump up^ βακτηρία in Liddell and Scott.
  18. Jump up^ bacterium Archived 27 January 2011 at the Wayback Machine., on Oxford Dictionaries.
  19. Jump up^ Harper, Douglas. “bacteria”Online Etymology Dictionary.
  20. Jump up^ Schopf JW (July 1994). “Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic”Proceedings of the National Academy of Sciences of the United States of America91 (15): 6735–42. Bibcode:1994PNAS…91.6735Sdoi:10.1073/pnas.91.15.6735PMC 44277Freely accessiblePMID 8041691.
  21. Jump up^ DeLong EF, Pace NR (August 2001). “Environmental diversity of bacteria and archaea”. Systematic Biology50 (4): 470–8. doi:10.1080/106351501750435040PMID 12116647.
  22. Jump up^ Brown JR, Doolittle WF (December 1997). “Archaea and the prokaryote-to-eukaryote transition”Microbiology and Molecular Biology Reviews61 (4): 456–502. PMC 232621Freely accessiblePMID 9409149.
  23. Jump up^ Di Giulio M (December 2003). “The universal ancestor and the ancestor of bacteria were hyperthermophiles”. Journal of Molecular Evolution57 (6): 721–30. Bibcode:2003JMolE..57..721Ddoi:10.1007/s00239-003-2522-6PMID 14745541.
  24. Jump up^ Battistuzzi FU, Feijao A, Hedges SB (November 2004). “A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land”BMC Evolutionary Biology4: 44. doi:10.1186/1471-2148-4-44PMC 533871Freely accessiblePMID 15535883.
  25. Jump up^ Poole AM, Penny D (January 2007). “Evaluating hypotheses for the origin of eukaryotes”. BioEssays29 (1): 74–84. doi:10.1002/bies.20516PMID 17187354.
  26. Jump up^ Dyall SD, Brown MT, Johnson PJ (April 2004). “Ancient invasions: from endosymbionts to organelles”. Science304 (5668): 253–7. Bibcode:2004Sci…304..253Ddoi:10.1126/science.1094884PMID 15073369.
  27. Jump up^ Lang BF, Gray MW, Burger G (1999). “Mitochondrial genome evolution and the origin of eukaryotes”. Annual Review of Genetics33: 351–97. doi:10.1146/annurev.genet.33.1.351PMID 10690412.
  28. Jump up^ McFadden GI (December 1999). “Endosymbiosis and evolution of the plant cell”. Current Opinion in Plant Biology2 (6): 513–9. doi:10.1016/S1369-5266(99)00025-4PMID 10607659.
  29. Jump up^ Schulz HN, Jorgensen BB (2001). “Big bacteria”. Annual Review of Microbiology55: 105–37. doi:10.1146/annurev.micro.55.1.105PMID 11544351.
  30. Jump up^ Williams C (2011). “Who are you calling simple?”. New Scientist211 (2821): 38–41. doi:10.1016/S0262-4079(11)61709-0.
  31. Jump up^ Robertson J, Gomersall M, Gill P (November 1975). “Mycoplasma hominis: growth, reproduction, and isolation of small viable cells”Journal of Bacteriology124 (2): 1007–18. PMC 235991Freely accessiblePMID 1102522.
  32. Jump up^ Velimirov B (2001). “Nanobacteria, Ultramicrobacteria and Starvation Forms: A Search for the Smallest Metabolizing Bacterium”. Microbes and Environments16 (2): 67–77. doi:10.1264/jsme2.2001.67.
  33. Jump up^ Dusenbery, David B. (2009). Living at Micro Scale, pp. 20–25. Harvard University Press, Cambridge, Massachusetts ISBN 978-0-674-03116-6.
  34. Jump up^ Yang DC, Blair KM, Salama NR (March 2016). “Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments”Microbiology and Molecular Biology Reviews80 (1): 187–203. doi:10.1128/MMBR.00031-15PMC 4771367Freely accessiblePMID 26864431.
  35. Jump up^ Cabeen MT, Jacobs-Wagner C (August 2005). “Bacterial cell shape”. Nature Reviews. Microbiology3 (8): 601–10. doi:10.1038/nrmicro1205PMID 16012516.
  36. Jump up^ Young KD (September 2006). “The selective value of bacterial shape”Microbiology and Molecular Biology Reviews70 (3): 660–703. doi:10.1128/MMBR.00001-06PMC 1594593Freely accessiblePMID 16959965.
  37. Jump up^ Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP (February 2014). “Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies”. Nature Reviews. Microbiology12 (2): 115–24. doi:10.1038/nrmicro3178PMID 24384602.
  38. Jump up^ Shimkets LJ (1999). “Intercellular signaling during fruiting-body development of Myxococcus xanthus”. Annual Review of Microbiology53: 525–49. doi:10.1146/annurev.micro.53.1.525PMID 10547700.
  39. Jump up to:a b Kaiser D (2004). “Signaling in myxobacteria”. Annual Review of Microbiology58: 75–98. doi:10.1146/annurev.micro.58.030603.123620PMID 15487930.
  40. Jump up^ Donlan RM (September 2002). “Biofilms: microbial life on surfaces”Emerging Infectious Diseases8 (9): 881–90. doi:10.3201/eid0809.020063PMC 2732559Freely accessiblePMID 12194761.
  41. Jump up^ Branda SS, Vik S, Friedman L, Kolter R (January 2005). “Biofilms: the matrix revisited”. Trends in Microbiology13 (1): 20–6. doi:10.1016/j.tim.2004.11.006PMID 15639628.
  42. Jump up to:a b Davey ME, O’toole GA (December 2000). “Microbial biofilms: from ecology to molecular genetics”Microbiology and Molecular Biology Reviews64 (4): 847–67. doi:10.1128/MMBR.64.4.847-867.2000PMC 99016Freely accessiblePMID 11104821.
  43. Jump up^ Donlan RM, Costerton JW (April 2002). “Biofilms: survival mechanisms of clinically relevant microorganisms”Clinical Microbiology Reviews15 (2): 167–93. doi:10.1128/CMR.15.2.167-193.2002PMC 118068Freely accessiblePMID 11932229.
  44. Jump up^ Slonczewski JL, Foster JW (2013). Microbiology : an Evolving Science (Third ed.). New York, N. Y.: W W Norton. p. 82. ISBN 9780393123678.
  45. Jump up^ Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP (2013). Molecular Cell Biology (7th ed.). WH Freeman. p. 13. ISBN 9781429234139.
  46. Jump up^ Bobik TA (May 2006). “Polyhedral organelles compartmenting bacterial metabolic processes”. Applied Microbiology and Biotechnology70 (5): 517–25. doi:10.1007/s00253-005-0295-0PMID 16525780.
  47. Jump up^ Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (September 2008). “Protein-based organelles in bacteria: carboxysomes and related microcompartments”. Nature Reviews. Microbiology6 (9): 681–91. doi:10.1038/nrmicro1913PMID 18679172.
  48. Jump up^ Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (August 2005). “Protein structures forming the shell of primitive bacterial organelles”. Science309 (5736): 936–8. Bibcode:2005Sci…309..936Kdoi:10.1126/science.1113397PMID 16081736.
  49. Jump up^ Gitai Z (March 2005). “The new bacterial cell biology: moving parts and subcellular architecture”. Cell120 (5): 577–86. doi:10.1016/j.cell.2005.02.026PMID 15766522.
  50. Jump up^ Shih YL, Rothfield L (September 2006). “The bacterial cytoskeleton”Microbiology and Molecular Biology Reviews70 (3): 729–54. doi:10.1128/MMBR.00017-06PMC 1594594Freely accessiblePMID 16959967.
  51. Jump up^ Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K (March 2007). “Functional taxonomy of bacterial hyperstructures”Microbiology and Molecular Biology Reviews71 (1): 230–53. doi:10.1128/MMBR.00035-06PMC 1847379Freely accessiblePMID 17347523.
  52. Jump up^ Harold FM (June 1972). “Conservation and transformation of energy by bacterial membranes”Bacteriological Reviews36 (2): 172–230. PMC 408323Freely accessiblePMID 4261111.
  53. Jump up^ Bryant DA, Frigaard NU (November 2006). “Prokaryotic photosynthesis and phototrophy illuminated”. Trends in Microbiology14 (11): 488–96. doi:10.1016/j.tim.2006.09.001PMID 16997562.
  54. Jump up^ Psencík J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (August 2004). “Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria”Biophysical Journal87 (2): 1165–72. Bibcode:2004BpJ….87.1165Pdoi:10.1529/biophysj.104.040956PMC 1304455Freely accessiblePMID 15298919.
  55. Jump up^ Thanbichler M, Wang SC, Shapiro L (October 2005). “The bacterial nucleoid: a highly organized and dynamic structure”. Journal of Cellular Biochemistry96 (3): 506–21. doi:10.1002/jcb.20519PMID 15988757.
  56. Jump up^ Poehlsgaard J, Douthwaite S (November 2005). “The bacterial ribosome as a target for antibiotics”. Nature Reviews. Microbiology3 (11): 870–81. doi:10.1038/nrmicro1265PMID 16261170.
  57. Jump up^ Yeo M, Chater K (March 2005). “The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor”Microbiology151 (Pt 3): 855–61. doi:10.1099/mic.0.27428-0PMID 15758231Archived from the original on 29 September 2007.
  58. Jump up^ Shiba T, Tsutsumi K, Ishige K, Noguchi T (March 2000). “Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications”Biochemistry. Biokhimiia65 (3): 315–23. PMID 10739474Archived from the original on 25 September 2006.
  59. Jump up^ Brune DC (June 1995). “Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina”. Archives of Microbiology163(6): 391–9. doi:10.1007/BF00272127PMID 7575095.
  60. Jump up^ Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005). “Ecological and agricultural significance of bacterial polyhydroxyalkanoates”. Critical Reviews in Microbiology31 (2): 55–67. doi:10.1080/10408410590899228PMID 15986831.
  61. Jump up^ Walsby AE (March 1994). “Gas vesicles”Microbiological Reviews58 (1): 94–144. PMC 372955Freely accessiblePMID 8177173.
  62. Jump up^ van Heijenoort J (March 2001). “Formation of the glycan chains in the synthesis of bacterial peptidoglycan”. Glycobiology11 (3): 25R–36R. doi:10.1093/glycob/11.3.25RPMID 11320055.
  63. Jump up to:a b Koch AL (October 2003). “Bacterial wall as target for attack: past, present, and future research”Clinical Microbiology Reviews16 (4): 673–87. doi:10.1128/CMR.16.4.673-687.2003PMC 207114Freely accessiblePMID 14557293.
  64. Jump up to:a b Gram, HC (1884). “Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten”. Fortschr. Med2: 185–189.
  65. Jump up^ Hugenholtz P (2002). “Exploring prokaryotic diversity in the genomic era”Genome Biology3 (2): REVIEWS0003. doi:10.1186/gb-2002-3-2-reviews0003PMC 139013Freely accessiblePMID 11864374.
  66. Jump up^ Walsh FM, Amyes SG (October 2004). “Microbiology and drug resistance mechanisms of fully resistant pathogens”. Current Opinion in Microbiology7 (5): 439–44. doi:10.1016/j.mib.2004.08.007PMID 15451497.
  67. Jump up^ Alderwick LJ, Harrison J, Lloyd GS, Birch HL (March 2015). “The Mycobacterial Cell Wall–Peptidoglycan and Arabinogalactan”Cold Spring Harbor Perspectives in Medicine5 (8): a021113. doi:10.1101/cshperspect.a021113PMC 4526729Freely accessiblePMID 25818664.
  68. Jump up^ Engelhardt H, Peters J (December 1998). “Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions”. Journal of Structural Biology124 (2–3): 276–302. doi:10.1006/jsbi.1998.4070PMID 10049812.
  69. Jump up^ Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval SF (June 1997). “Functions of S-layers”. FEMS Microbiology Reviews20 (1–2): 99–149. doi:10.1016/S0168-6445(97)00043-0PMID 9276929.
  70. Jump up^ Kojima S, Blair DF (2004). “The bacterial flagellar motor: structure and function of a complex molecular machine”. International Review of Cytology. International Review of Cytology. 233: 93–134. doi:10.1016/S0074-7696(04)33003-2ISBN 978-0-12-364637-8PMID 15037363.
  71. Jump up^ Beachey EH (March 1981). “Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface”. The Journal of Infectious Diseases143 (3): 325–45. doi:10.1093/infdis/143.3.325PMID 7014727.
  72. Jump up^ Silverman PM (February 1997). “Towards a structural biology of bacterial conjugation”. Molecular Microbiology23 (3): 423–9. doi:10.1046/j.1365-2958.1997.2411604.xPMID 9044277.
  73. Jump up^ Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (June 2015). “Secretion systems in Gram-negative bacteria: structural and mechanistic insights”. Nature Reviews. Microbiology13 (6): 343–59. doi:10.1038/nrmicro3456PMID 25978706.
  74. Jump up^ Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM (October 2004). “The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages”Infection and Immunity72 (10): 5676–86. doi:10.1128/IAI.72.10.5676-5686.2004PMC 517526Freely accessiblePMID 15385466.
  75. Jump up^ Daffé M, Etienne G (1999). “The capsule of Mycobacterium tuberculosis and its implications for pathogenicity”. Tubercle and Lung Disease79 (3): 153–69. doi:10.1054/tuld.1998.0200PMID 10656114.
  76. Jump up^ Finlay BB, Falkow S (June 1997). “Common themes in microbial pathogenicity revisited”Microbiology and Molecular Biology Reviews61 (2): 136–69. PMC 232605Freely accessiblePMID 9184008.
  77. Jump up^ Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (September 2000). “Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments”Microbiology and Molecular Biology Reviews64 (3): 548–72. doi:10.1128/MMBR.64.3.548-572.2000PMC 99004Freely accessiblePMID 10974126.
  78. Jump up to:a b McKenney PT, Driks A, Eichenberger P (January 2013). “The Bacillus subtilis endospore: assembly and functions of the multilayered coat”. Nature Reviews. Microbiology11 (1): 33–44. doi:10.1038/nrmicro2921PMID 23202530.
  79. Jump up^ Nicholson WL, Fajardo-Cavazos P, Rebeil R, Slieman TA, Riesenman PJ, Law JF, Xue Y (August 2002). “Bacterial endospores and their significance in stress resistance”. Antonie van Leeuwenhoek81 (1–4): 27–32. doi:10.1023/A:1020561122764PMID 12448702.
  80. Jump up^ Vreeland RH, Rosenzweig WD, Powers DW (October 2000). “Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal”. Nature407(6806): 897–900. Bibcode:2000Natur.407..897Vdoi:10.1038/35038060PMID 11057666.
  81. Jump up^ Cano RJ, Borucki MK (May 1995). “Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber”. Science268 (5213): 1060–4. Bibcode:1995Sci…268.1060Cdoi:10.1126/science.7538699PMID 7538699.
  82. Jump up^ Nicholson WL, Schuerger AC, Setlow P (April 2005). “The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight”. Mutation Research571 (1–2): 249–64. doi:10.1016/j.mrfmmm.2004.10.012PMID 15748651.
  83. Jump up^ Hatheway CL (January 1990). “Toxigenic clostridia”Clinical Microbiology Reviews3 (1): 66–98. PMC 358141Freely accessiblePMID 2404569.
  84. Jump up^ Nealson KH (January 1999). “Post-Viking microbiology: new approaches, new data, new insights”. Origins of Life and Evolution of the Biosphere29 (1): 73–93. doi:10.1023/A:1006515817767PMID 11536899.
  85. Jump up^ Xu J (June 2006). “Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances”. Molecular Ecology15 (7): 1713–31. doi:10.1111/j.1365-294X.2006.02882.xPMID 16689892.
  86. Jump up^ Zillig W (December 1991). “Comparative biochemistry of Archaea and Bacteria”. Current Opinion in Genetics & Development1 (4): 544–51. doi:10.1016/S0959-437X(05)80206-0PMID 1822288.
  87. Jump up to:a b c Slonczewski JL, Foster JW. Microbiology: An Evolving Science (3 ed.). WW Norton & Company. pp. 491–494.
  88. Jump up^ Hellingwerf KJ, Crielaard W, Hoff WD, Matthijs HC, Mur LR, van Rotterdam BJ (1994). “Photobiology of bacteria”. Antonie van Leeuwenhoek65 (4): 331–47. doi:10.1007/BF00872217PMID 7832590.
  89. Jump up^ Dalton H (June 2005). “The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria”Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences360 (1458): 1207–22. doi:10.1098/rstb.2005.1657PMC 1569495Freely accessiblePMID 16147517.
  90. Jump up^ Zehr JP, Jenkins BD, Short SM, Steward GF (July 2003). “Nitrogenase gene diversity and microbial community structure: a cross-system comparison”. Environmental Microbiology5 (7): 539–54. doi:10.1046/j.1462-2920.2003.00451.xPMID 12823187.
  91. Jump up^ Zumft WG (December 1997). “Cell biology and molecular basis of denitrification”Microbiology and Molecular Biology Reviews61 (4): 533–616. PMC 232623Freely accessiblePMID 9409151.
  92. Jump up^ Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997). “Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?”. BioFactors6 (1): 13–24. doi:10.1002/biof.5520060103PMID 9233536.
  93. Jump up^ Morel FM, Kraepiel AM, Amyot M (1998). “The chemical cycle and bioaccumulation of mercury”. Annual Review of Ecology and Systematics29: 543–566. doi:10.1146/annurev.ecolsys.29.1.543.
  94. Jump up^ Koch AL (2002). “Control of the bacterial cell cycle by cytoplasmic growth”. Critical Reviews in Microbiology28 (1): 61–77. doi:10.1080/1040-840291046696PMID 12003041.
  95. Jump up^ Eagon RG (April 1962). “Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes”Journal of Bacteriology83 (4): 736–7. PMC 279347Freely accessiblePMID 13888946.
  96. Jump up^ Stewart EJ, Madden R, Paul G, Taddei F (February 2005). “Aging and death in an organism that reproduces by morphologically symmetric division”PLoS Biology3(2): e45. doi:10.1371/journal.pbio.0030045PMC 546039Freely accessiblePMID 15685293.
  97. Jump up to:a b c Thomson RB, Bertram H (December 2001). “Laboratory diagnosis of central nervous system infections”. Infectious Disease Clinics of North America15 (4): 1047–71. doi:10.1016/S0891-5520(05)70186-0PMID 11780267.
  98. Jump up^ Paerl HW, Fulton RS, Moisander PH, Dyble J (April 2001). “Harmful freshwater algal blooms, with an emphasis on cyanobacteria”. TheScientificWorldJournal1: 76–113. doi:10.1100/tsw.2001.16PMID 12805693.
  99. Jump up^ Challis GL, Hopwood DA (November 2003). “Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species”Proceedings of the National Academy of Sciences of the United States of America. 100 Suppl 2 (90002): 14555–61. Bibcode:2003PNAS..10014555Cdoi:10.1073/pnas.1934677100PMC 304118Freely accessiblePMID 12970466.
  100. Jump up^ Kooijman SA, Auger P, Poggiale JC, Kooi BW (August 2003). “Quantitative steps in symbiogenesis and the evolution of homeostasis”. Biological Reviews of the Cambridge Philosophical Society78 (3): 435–63. doi:10.1017/S1464793102006127PMID 14558592.
  101. Jump up^ Prats C, López D, Giró A, Ferrer J, Valls J (August 2006). “Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase”. Journal of Theoretical Biology241 (4): 939–53. doi:10.1016/j.jtbi.2006.01.029PMID 16524598.
  102. Jump up^ Hecker M, Völker U (2001). “General stress response of Bacillus subtilis and other bacteria”. Advances in Microbial Physiology. Advances in Microbial Physiology. 44: 35–91. doi:10.1016/S0065-2911(01)44011-2ISBN 978-0-12-027744-5PMID 11407115.
  103. Jump up^ Slonczewski JL, Foster JW. Microbiology: An Evolving Science (3 ed.). WW Norton & Company. p. 143.
  104. Jump up^ Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (October 2006). “The 160-kilobase genome of the bacterial endosymbiont Carsonella”. Science314 (5797): 267. doi:10.1126/science.1134196PMID 17038615.
  105. Jump up^ Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (December 2002). “Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56”. Archives of Microbiology178 (6): 484–92. doi:10.1007/s00203-002-0479-2PMID 12420170.
  106. Jump up^ Hinnebusch J, Tilly K (December 1993). “Linear plasmids and chromosomes in bacteria”. Molecular Microbiology10 (5): 917–22. doi:10.1111/j.1365-2958.1993.tb00963.xPMID 7934868.
  107. Jump up^ Lin YS, Kieser HM, Hopwood DA, Chen CW (December 1993). “The chromosomal DNA of Streptomyces lividans 66 is linear”. Molecular Microbiology10 (5): 923–33. doi:10.1111/j.1365-2958.1993.tb00964.xPMID 7934869.
  108. Jump up^ Val ME, Soler-Bistué A, Bland MJ, Mazel D (December 2014). “Management of multipartite genomes: the Vibrio cholerae model”. Current Opinion in Microbiology22: 120–6. doi:10.1016/j.mib.2014.10.003PMID 25460805.
  109. Jump up^ Kado CI (October 2014). “Historical Events That Spawned the Field of Plasmid Biology”. Microbiology Spectrum2 (5): 3. doi:10.1128/microbiolspec.PLAS-0019-2013ISBN 9781555818975PMID 26104369.
  110. Jump up^ Belfort M, Reaban ME, Coetzee T, Dalgaard JZ (July 1995). “Prokaryotic introns and inteins: a panoply of form and function”Journal of Bacteriology177 (14): 3897–903. doi:10.1128/jb.177.14.3897-3903.1995PMC 177115Freely accessiblePMID 7608058.
  111. Jump up^ Denamur E, Matic I (May 2006). “Evolution of mutation rates in bacteria”. Molecular Microbiology60 (4): 820–7. doi:10.1111/j.1365-2958.2006.05150.xPMID 16677295.
  112. Jump up^ Wright BE (May 2004). “Stress-directed adaptive mutations and evolution”. Molecular Microbiology52 (3): 643–50. doi:10.1111/j.1365-2958.2004.04012.xPMID 15101972.
  113. Jump up^ Chen I, Dubnau D (March 2004). “DNA uptake during bacterial transformation”. Nature Reviews. Microbiology2 (3): 241–9. doi:10.1038/nrmicro844PMID 15083159.
  114. Jump up^ Johnsborg O, Eldholm V, Håvarstein LS (December 2007). “Natural genetic transformation: prevalence, mechanisms and function”. Research in Microbiology158(10): 767–78. doi:10.1016/j.resmic.2007.09.004PMID 17997281.
  115. Jump up^ Bernstein H, Bernstein C, Michod RE (2012). “DNA repair as the primary adaptive function of sex in bacteria and eukaryotes”. Chapter 1: pp. 1–49 in: DNA Repair: New Research, Sakura Kimura and Sora Shimizu (eds.). Nova Sci. Publ., Hauppauge, N.Y. ISBN 978-1-62100-808-8.
  116. Jump up^ Brüssow H, Canchaya C, Hardt WD (September 2004). “Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion”Microbiology and Molecular Biology Reviews68 (3): 560–602, table of contents. doi:10.1128/MMBR.68.3.560-602.2004PMC 515249Freely accessiblePMID 15353570.
  117. Jump up^ Bickle TA, Krüger DH (June 1993). “Biology of DNA restriction”Microbiological Reviews57 (2): 434–50. PMC 372918Freely accessiblePMID 8336674.
  118. Jump up^ Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (March 2007). “CRISPR provides acquired resistance against viruses in prokaryotes”. Science315 (5819): 1709–12. Bibcode:2007Sci…315.1709Bdoi:10.1126/science.1138140PMID 17379808.
  119. Jump up^ Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (August 2008). “Small CRISPR RNAs guide antiviral defense in prokaryotes”Science321 (5891): 960–4. Bibcode:2008Sci…321..960Bdoi:10.1126/science.1159689PMC 5898235Freely accessiblePMID 18703739.
  120. Jump up^ Michod RE, Bernstein H, Nedelcu AM (May 2008). “Adaptive value of sex in microbial pathogens” (PDF). Infection, Genetics and Evolution8 (3): 267–85. doi:10.1016/j.meegid.2008.01.002PMID 18295550Archived (PDF) from the original on 30 December 2016.
  121. Jump up^ Hastings PJ, Rosenberg SM, Slack A (September 2004). “Antibiotic-induced lateral transfer of antibiotic resistance”. Trends in Microbiology12 (9): 401–4. doi:10.1016/j.tim.2004.07.003PMID 15337159.
  122. Jump up^ Davison J (September 1999). “Genetic exchange between bacteria in the environment”. Plasmid42 (2): 73–91. doi:10.1006/plas.1999.1421PMID 10489325.
  123. Jump up to:a b c Bardy SL, Ng SY, Jarrell KF (February 2003). “Prokaryotic motility structures”. Microbiology149 (Pt 2): 295–304. doi:10.1099/mic.0.25948-0PMID 12624192.
  124. Jump up^ Macnab RM (December 1999). “The bacterial flagellum: reversible rotary propellor and type III export apparatus”Journal of Bacteriology181 (23): 7149–53. PMC 103673Freely accessiblePMID 10572114.
  125. Jump up^ Wu M, Roberts JW, Kim S, Koch DL, DeLisa MP (July 2006). “Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique”Applied and Environmental Microbiology72 (7): 4987–94. doi:10.1128/AEM.00158-06PMC 1489374Freely accessiblePMID 16820497.
  126. Jump up^ Mattick, John S (2002). “Type IV Pili and Twitching Motility”. Annual Review of Microbiology56: 289–314. doi:10.1146/annurev.micro.56.012302.160938PMID 12142488.
  127. Jump up^ Merz AJ, So M, Sheetz MP (September 2000). “Pilus retraction powers bacterial twitching motility”. Nature407 (6800): 98–102. Bibcode:2000Natur.407…98Mdoi:10.1038/35024105PMID 10993081.
  128. Jump up^ Lux R, Shi W (July 2004). “Chemotaxis-guided movements in bacteria”. Critical Reviews in Oral Biology and Medicine15 (4): 207–20. doi:10.1177/154411130401500404PMID 15284186.
  129. Jump up^ Schweinitzer T, Josenhans C (July 2010). “Bacterial energy taxis: a global strategy?”Archives of Microbiology192 (7): 507–20. doi:10.1007/s00203-010-0575-7PMC 2886117Freely accessiblePMID 20411245.
  130. Jump up^ Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (August 1997). “Magneto-aerotaxis in marine coccoid bacteria”Biophysical Journal73 (2): 994–1000. Bibcode:1997BpJ….73..994Fdoi:10.1016/S0006-3495(97)78132-3PMC 1180996Freely accessiblePMID 9251816.
  131. Jump up^ Goldberg MB (December 2001). “Actin-based motility of intracellular microbial pathogens”Microbiology and Molecular Biology Reviews65 (4): 595–626, table of contents. doi:10.1128/MMBR.65.4.595-626.2001PMC 99042Freely accessiblePMID 11729265.
  132. Jump up^ Dusenbery, David B. (1996). Life at Small Scale. Scientific American Library. ISBN 0-7167-5060-0.
  133. Jump up to:a b Shapiro JA (1998). “Thinking about bacterial populations as multicellular organisms” (PDF). Annual Review of Microbiology52: 81–104. doi:10.1146/annurev.micro.52.1.81PMID 9891794. Archived from the original(PDF) on 17 July 2011.
  134. Jump up to:a b Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995). “Microbial biofilms”. Annual Review of Microbiology49: 711–45. doi:10.1146/annurev.mi.49.100195.003431PMID 8561477.
  135. Jump up^ Miller MB, Bassler BL (2001). “Quorum sensing in bacteria”. Annual Review of Microbiology55: 165–99. doi:10.1146/annurev.micro.55.1.165PMID 11544353.
  136. Jump up^ Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (March 2006). “Toward automatic reconstruction of a highly resolved tree of life”. Science311(5765): 1283–7. Bibcode:2006Sci…311.1283Cdoi:10.1126/science.1123061PMID 16513982.
  137. Jump up^ Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbø CL, Case RJ, Doolittle WF (2003). “Lateral gene transfer and the origins of prokaryotic groups”. Annual Review of Genetics37: 283–328. doi:10.1146/annurev.genet.37.050503.084247PMID 14616063.
  138. Jump up^ Olsen GJ, Woese CR, Overbeek R (January 1994). “The winds of (evolutionary) change: breathing new life into microbiology”Journal of Bacteriology176 (1): 1–6. doi:10.2172/205047PMC 205007Freely accessiblePMID 8282683.
  139. Jump up^ “IJSEM Home”. Ijs.sgmjournals.org. 28 October 2011. Archived from the original on 19 October 2011. Retrieved 4 November 2011.
  140. Jump up^ “Bergey’s Manual Trust”. Bergeys.org. Archived from the original on 7 November 2011. Retrieved 4 November 2011.
  141. Jump up^ Gupta RS (2000). “The natural evolutionary relationships among prokaryotes”. Critical Reviews in Microbiology26 (2): 111–31. doi:10.1080/10408410091154219PMID 10890353.
  142. Jump up^ Doolittle RF (June 2005). “Evolutionary aspects of whole-genome biology”. Current Opinion in Structural Biology15 (3): 248–53. doi:10.1016/j.sbi.2005.04.001PMID 15963888.
  143. Jump up^ Cavalier-Smith T (January 2002). “The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification”. International Journal of Systematic and Evolutionary Microbiology52 (Pt 1): 7–76. doi:10.1099/00207713-52-1-7PMID 11837318.
  144. Jump up^ Woods GL, Walker DH (July 1996). “Detection of infection or infectious agents by use of cytologic and histologic stains”Clinical Microbiology Reviews9 (3): 382–404. PMC 172900Freely accessiblePMID 8809467.
  145. Jump up^ Weinstein MP (March 1994). “Clinical importance of blood cultures”. Clinics in Laboratory Medicine14 (1): 9–16. PMID 8181237.
  146. Jump up^ Louie M, Louie L, Simor AE (August 2000). “The role of DNA amplification technology in the diagnosis of infectious diseases”CMAJ163 (3): 301–9. PMC 80298Freely accessiblePMID 10951731Archived from the original on 14 June 2006.
  147. Jump up^ Oliver JD (February 2005). “The viable but nonculturable state in bacteria”Journal of Microbiology. 43 Spec No: 93–100. PMID 15765062. Archived from the original on 28 September 2007.
  148. Jump up^ Euzéby JP (8 December 2011). “Number of published names”List of Prokaryotic names with Standing in Nomenclature. Archived from the original on 19 January 2012. Retrieved 10 December 2011.
  149. Jump up^ Curtis TP, Sloan WT, Scannell JW (August 2002). “Estimating prokaryotic diversity and its limits”Proceedings of the National Academy of Sciences of the United States of America99 (16): 10494–9. Bibcode:2002PNAS…9910494Cdoi:10.1073/pnas.142680199PMC 124953Freely accessiblePMID 12097644.
  150. Jump up^ Schloss PD, Handelsman J (December 2004). “Status of the microbial census”Microbiology and Molecular Biology Reviews68 (4): 686–91. doi:10.1128/MMBR.68.4.686-691.2004PMC 539005Freely accessiblePMID 15590780.
  151. Jump up^ Fisher B, Harvey RP, Champe PC (2007). Lippincott’s Illustrated Reviews: Microbiology (Lippincott’s Illustrated Reviews Series). Hagerstwon, MD: Lippincott Williams & Wilkins. pp. Chapter 33, pages 367–392. ISBN 0-7817-8215-5.
  152. Jump up^ LEF.org > Bacterial Infections Updated: 19 January 2006. Retrieved on 11 April 2009
  153. Jump up^ Martin MO (September 2002). “Predatory prokaryotes: an emerging research opportunity”. Journal of Molecular Microbiology and Biotechnology4 (5): 467–77. PMID 12432957.
  154. Jump up^ Velicer GJ, Stredwick KL (August 2002). “Experimental social evolution with Myxococcus xanthus”. Antonie van Leeuwenhoek81 (1–4): 155–64. doi:10.1023/A:1020546130033PMID 12448714.
  155. Jump up^ Gromov BV (1972). “Electron Microscope Study of Parasitism by Bdellovibrio Chorellavorus Bacteria on Cells of the Green Alga Chorella Vulgaris”. Tsitologiya14(2): 256–60.
  156. Jump up^ Guerrero R, Pedros-Alio C, Esteve I, Mas J, Chase D, Margulis L (April 1986). “Predatory prokaryotes: predation and primary consumption evolved in bacteria”Proceedings of the National Academy of Sciences of the United States of America83(7): 2138–42. Bibcode:1986PNAS…83.2138Gdoi:10.1073/pnas.83.7.2138PMC 323246Freely accessiblePMID 11542073.
  157. Jump up^ Velicer GJ, Mendes-Soares H (January 2009). “Bacterial predators”. Current Biology19 (2): R55–6. doi:10.1016/j.cub.2008.10.043PMID 19174136.
  158. Jump up^ Stams AJ, de Bok FA, Plugge CM, van Eekert MH, Dolfing J, Schraa G (March 2006). “Exocellular electron transfer in anaerobic microbial communities”. Environmental Microbiology8 (3): 371–82. doi:10.1111/j.1462-2920.2006.00989.xPMID 16478444.
  159. Jump up^ Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (July 2005). “Microbial co-operation in the rhizosphere”. Journal of Experimental Botany56 (417): 1761–78. doi:10.1093/jxb/eri197PMID 15911555.
  160. Jump up^ O’Hara AM, Shanahan F (July 2006). “The gut flora as a forgotten organ”EMBO Reports7 (7): 688–93. doi:10.1038/sj.embor.7400731PMC 1500832Freely accessiblePMID 16819463.
  161. Jump up^ Zoetendal EG, Vaughan EE, de Vos WM (March 2006). “A microbial world within us”. Molecular Microbiology59 (6): 1639–50. doi:10.1111/j.1365-2958.2006.05056.xPMID 16553872.
  162. Jump up^ Gorbach SL (February 1990). “Lactic acid bacteria and human health”. Annals of Medicine22 (1): 37–41. doi:10.3109/07853899009147239PMID 2109988.
  163. Jump up^ Salminen SJ, Gueimonde M, Isolauri E (May 2005). “Probiotics that modify disease risk”. The Journal of Nutrition135 (5): 1294–8. doi:10.1093/jn/135.5.1294PMID 15867327.
  164. Jump up^ Fish DN (February 2002). “Optimal antimicrobial therapy for sepsis”. American Journal of Health-System Pharmacy. 59 Suppl 1: S13–9. PMID 11885408.
  165. Jump up^ Belland RJ, Ouellette SP, Gieffers J, Byrne GI (February 2004). “Chlamydia pneumoniae and atherosclerosis”. Cellular Microbiology6 (2): 117–27. doi:10.1046/j.1462-5822.2003.00352.xPMID 14706098.
  166. Jump up^ Heise ER (February 1982). “Diseases associated with immunosuppression”Environmental Health Perspectives43: 9–19. doi:10.2307/3429162JSTOR 3429162PMC 1568899Freely accessiblePMID 7037390.
  167. Jump up^ Saiman L (2004). “Microbiology of early CF lung disease”. Paediatric Respiratory Reviews. 5 Suppl A: S367–9. doi:10.1016/S1526-0542(04)90065-6PMID 14980298.
  168. Jump up^ Yonath A, Bashan A (2004). “Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics”. Annual Review of Microbiology58: 233–51. doi:10.1146/annurev.micro.58.030603.123822PMID 15487937.
  169. Jump up^ Khachatourians GG (November 1998). “Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria”CMAJ159 (9): 1129–36. PMC 1229782Freely accessiblePMID 9835883.
  170. Jump up^ Johnson ME, Lucey JA (April 2006). “Major technological advances and trends in cheese”. Journal of Dairy Science89 (4): 1174–8. doi:10.3168/jds.S0022-0302(06)72186-5PMID 16537950.
  171. Jump up^ Hagedorn S, Kaphammer B (1994). “Microbial biocatalysis in the generation of flavor and fragrance chemicals”. Annual Review of Microbiology48: 773–800. doi:10.1146/annurev.mi.48.100194.004013PMID 7826026.
  172. Jump up^ Cohen Y (December 2002). “Bioremediation of oil by marine microbial mats”. International Microbiology5 (4): 189–93. doi:10.1007/s10123-002-0089-5PMID 12497184.
  173. Jump up^ Neves LC, Miyamura TT, Moraes DA, Penna TC, Converti A (2006). “Biofiltration methods for the removal of phenolic residues”. Applied Biochemistry and Biotechnology. 129-132: 130–52. doi:10.1385/ABAB:129:1:130PMID 16915636.
  174. Jump up^ Liese A, Filho MV (December 1999). “Production of fine chemicals using biocatalysis”. Current Opinion in Biotechnology10 (6): 595–603. doi:10.1016/S0958-1669(99)00040-3PMID 10600695.
  175. Jump up^ Aronson AI, Shai Y (February 2001). “Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action”. FEMS Microbiology Letters195 (1): 1–8. doi:10.1111/j.1574-6968.2001.tb10489.xPMID 11166987.
  176. Jump up^ Bozsik A (July 2006). “Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action”. Pest Management Science62 (7): 651–4. doi:10.1002/ps.1221PMID 16649191.
  177. Jump up^ Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004). “Bacterial insecticidal toxins”. Critical Reviews in Microbiology30 (1): 33–54. doi:10.1080/10408410490270712PMID 15116762.
  178. Jump up^ Serres MH, Gopal S, Nahum LA, Liang P, Gaasterland T, Riley M (2001). “A functional update of the Escherichia coli K-12 genome”Genome Biology2 (9): RESEARCH0035. doi:10.1186/gb-2001-2-9-research0035PMC 56896Freely accessiblePMID 11574054.
  179. Jump up^ Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL (February 2004). “Global organization of metabolic fluxes in the bacterium Escherichia coli”. Nature427 (6977): 839–43. arXiv:q-bio/0403001Freely accessibleBibcode:2004Natur.427..839Adoi:10.1038/nature02289PMID 14985762.
  180. Jump up^ Reed JL, Vo TD, Schilling CH, Palsson BO (2003). “An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)”Genome Biology4 (9): R54. doi:10.1186/gb-2003-4-9-r54PMC 193654Freely accessiblePMID 12952533.
  181. Jump up^ Walsh G (April 2005). “Therapeutic insulins and their large-scale manufacture”. Applied Microbiology and Biotechnology67 (2): 151–9. doi:10.1007/s00253-004-1809-xPMID 15580495.
  182. Jump up^ Graumann K, Premstaller A (February 2006). “Manufacturing of recombinant therapeutic proteins in microbial systems”. Biotechnology Journal1 (2): 164–86. doi:10.1002/biot.200500051PMID 16892246.
  183. Jump up^ Porter JR (June 1976). “Antony van Leeuwenhoek: tercentenary of his discovery of bacteria”Bacteriological Reviews40 (2): 260–9. PMC 413956Freely accessiblePMID 786250.
  184. Jump up^ van Leeuwenhoek A (1684). “An abstract of a letter from Mr. Anthony Leevvenhoek at Delft, dated Sep. 17, 1683, Containing Some Microscopical Observations, about Animals in the Scurf of the Teeth, the Substance Call’d Worms in the Nose, the Cuticula Consisting of Scales”. Philosophical Transactions14 (155–166): 568–574. doi:10.1098/rstl.1684.0030.
  185. Jump up^ van Leeuwenhoek A (1700). “Part of a Letter from Mr Antony van Leeuwenhoek, concerning the Worms in Sheeps Livers, Gnats, and Animalcula in the Excrements of Frogs”. Philosophical Transactions22 (260–276): 509–518. doi:10.1098/rstl.1700.0013.
  186. Jump up^ van Leeuwenhoek A (1702). “Part of a Letter from Mr Antony van Leeuwenhoek, F. R. S. concerning Green Weeds Growing in Water, and Some Animalcula Found about Them”. Philosophical Transactions23 (277–288): 1304–11. doi:10.1098/rstl.1702.0042.
  187. Jump up^ Asimov I (1982). Asimov’s Biographical Encyclopedia of Science and Technology(2nd ed.). Garden City, New York: Doubleday and Company. p. 143.
  188. Jump up^ Ehrenberg CG (1828). Symbolae Physioe. Animalia evertebrata. Berlin: Decas prima.
  189. Jump up^ Breed RS, Conn HJ (May 1936). “The Status of the Generic Term Bacterium Ehrenberg 1828”Journal of Bacteriology31 (5): 517–8. PMC 543738Freely accessiblePMID 16559906.
  190. Jump up^ Ehrenberg CG (1835). Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes [Third contribution to the knowledge of great organization in the direction of the smallest space] (in German). Berlin: Physikalische Abhandlungen der Koeniglichen Akademie der Wissenschaften. pp. 143–336.
  191. Jump up^ “Pasteur’s Papers on the Germ Theory”. LSU Law Center’s Medical and Public Health Law Site, Historic Public Health Articles. Archived from the original on 18 December 2006. Retrieved 23 November 2006.
  192. Jump up^ “The Nobel Prize in Physiology or Medicine 1905”. Nobelprize.org. Archivedfrom the original on 10 December 2006. Retrieved 22 November 2006.
  193. Jump up^ O’Brien SJ, Goedert JJ (October 1996). “HIV causes AIDS: Koch’s postulates fulfilled”. Current Opinion in Immunology8 (5): 613–8. doi:10.1016/S0952-7915(96)80075-6PMID 8902385.
  194. Jump up^ Chung K. “Ferdinand Julius Cohn (1828-1898): Pioneer of Bacteriology” (PDF). Department of Microbiology and Molecular Cell Sciences, The University of Memphis. Archived (PDF) from the original on 27 July 2011.
  195. Jump up^ Drews, Gerhart (1999). “Ferdinand Cohn, a founder of modern microbiology”(PDF). ASM News65 (8): 547–552. Archived from the original (PDF) on 13 July 2017.
  196. Jump up^ Thurston AJ (December 2000). “Of blood, inflammation and gunshot wounds: the history of the control of sepsis”. The Australian and New Zealand Journal of Surgery70 (12): 855–61. doi:10.1046/j.1440-1622.2000.01983.xPMID 11167573.
  197. Jump up^ Schwartz RS (March 2004). “Paul Ehrlich’s magic bullets”. The New England Journal of Medicine350 (11): 1079–80. doi:10.1056/NEJMp048021PMID 15014180.
  198. Jump up^ “Biography of Paul Ehrlich”. Nobelprize.org. Archived from the original on 28 November 2006. Retrieved 26 November 2006.

Further reading

External links

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s