Média, Mediana, Moda, Desvio padrão e Variância.


Olá, nesse post irei falar um pouco sobre Média, Mediana, Desvio padrão e :Variância.

Média

Em estatística a média é o valor que aponta para onde mais se concentram os dados de uma distribuição. Pode ser considerada o ponto de equilíbrio das frequências, num histograma.

Média é um valor significativo de uma lista de valores. Se todos os números da lista são os mesmos, então este número será a média dos valores. Caso contrário, um modo simples de representar os números da lista é escolher de forma aleatória algum número da lista. Contudo, a palavra ‘média’ é usualmente reservada para métodos mais sofisticados. Em último caso, a média é calculada através da combinação de valores de um conjunto de um modo específico e gerando um valor, a média do conjunto.

Média aritmética é a forma mais simples de calcular uma média, mas existem outros métodos, como a mediana (usada quando a distribuição de valores é mal organizada, com grandes e pequenos valores, como valores de rendimento).

Mediana

Em teoria da probabilidade e em estatística, a mediana é uma medida de tendência central, um número que caracteriza as observações de uma determinada variável de tal forma que este número (a mediana) de um grupo de dados ordenados separa a metade inferior da amostra, população ou distribuição de probabilidade, da metade superior. Mais concretamente, 1/2 da população terá valores inferiores ou iguais à mediana e 1/2 da população terá valores superiores ou iguais à mediana.

Outra Definição para o que é Mediana:

A Mediana de um conjunto de dados é o dado que fica no meio quando as entradas são colocadas em ordem crescente. Se o conjunto de dados tiver um número par de entradas a mediana será a média entre os dois pontos que estiverem no meio do conjunto. Depois de Ordenados os valores por ordem crescente e decrescente, a mediana é: O Valor que ocupa a posição central, se a quantidade desses valores for ímpar. A Média dos dois valores centrais se a quantidade desses valores for par

A mediana pode ser calculada para um conjunto de observações ou para funções de distribuição de probabilidade.

Moda

Em estatística descritiva, a moda é o valor que detém o maior número de observações, ou seja, o valor ou valores mais frequentes, ou ainda “o valor que ocorre com maior freqüência num conjunto de dados, isto é, o valor mais comum”.1

O termo moda foi utilizado primeiramente em 1895 por Karl Pearson, sob influência do termo moda referindo-se ao uso popular com o significado de objeto que se está usando muito no tempo presente.

A moda não é necessariamente única, ao contrário da média ou da mediana. É especialmente útil quando os valores ou observações não são numéricos, uma vez que a média e a mediana podem não ser bem definidas.3

  • Bimodal: possui dois valores modais.
  • Amodal: não possui moda.
  • Multimodal: possui mais do que dois valores modais.
EXEMPLOS:
A moda de {maçã, banana, laranja, laranja, laranja, pêssego} é laranja.
A série {1, 3, 5, 5, 6, 6} apresenta duas modas (BIMODAL): 5 e 6.
A série {1, 3, 2, 5, 8, 7, 9} não apresenta moda (AMODAL).
A série {1, 3, 5, 5, 6, 6, 7, 7} apresenta mais do que duas modas (MULTIMODAL): 5, 6 e 7

Deve-se observar que aquilo que se expressa como “maioria” num determinado conjunto de dados não necessariamente representa o valor que seja a moda estatística.4

A referência mais antiga conhecida do conceito da moda apresenta-se no cerco no inverno de 428 a.C. dos peloponésios e beócios aos plateus e atenienses. Os sitiados, necessitando construir escadas adequadas às muralhas inimigas, fizeram com que muitas pessoas contassem as fileiras de tijolos. Com tal estratagema, ainda que houvesse um número grande de erros, um número grande de contagem seria confiável.

Desvio padrão

Em Probabilidade e Estatística, o desvio padrão é a medida mais comum da dispersão estatística (representado pelo símbolo sigma, σ). Ele mostra o quanto de variação ou “dispersão” existe em relação à média (ou valor esperado). Um baixo desvio padrão indica que os dados tendem a estar próximos da média; um desvio padrão alto indica que os dados estão espalhados por uma gama de valores.

O desvio padrão define-se como a raiz quadrada da variância. É definido desta forma de maneira a dar-nos uma medida da dispersão que:

  1. seja um número não-negativo;
  2. use a mesma unidade de medida dos dados fornecidos inicialmente.

Faz-se uma distinção entre o desvio padrão σ (sigma) do total de uma população ou de uma variável aleatória, e o desvio padrão de um subconjunto em amostra

Variância

Na teoria da probabilidade e na estatística, a variância de uma variável aleatória é uma medida da sua dispersão estatística, indicando quão longe em geral os seus valores se encontram do valor esperado.

A variância de uma variável aleatória real é o seu segundo momento central e também o seu segundo cumulante (os cumulantes só diferem dos momentos centrais a partir do 4º grau, inclusive). Sendo o seu valor o quadrado do Desvio Padrão.

Fonte : Wikipedia.

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s